D2 Paper D - Marking Guide

1.

		B			minimum
		I	II	III	
A	I	- 3	4	0	- 3
	II	2	2	1	1
	III	3	-2	- 1	-2
column maximum		3	4	1	

$\max ($ row $\min)=\min ($ col max $)=1 \quad \therefore$ saddle point
$\therefore A$ should play II all the time, B should play III all the time value of game $=1$
2. (a)

lower figures give forward scan minimum time is 45 days
(b) upper figures give backward scan critical path is ACFILM

M1 A1
A1
M1 A1
A1
(6)
3. e.g. using stage, state approach:

Stage	State	Action	Destination	Value
1	I	IL	L	19*
	J	JL	L	18*
	K	KL	L	26*
2	E	$\begin{aligned} & \hline E I \\ & E J \end{aligned}$	$\begin{aligned} & I \\ & J \end{aligned}$	$\begin{aligned} & 35+19=54 \\ & 29+18=47 * \end{aligned}$
	F	$\begin{gathered} \hline F I \\ F J \\ F K \end{gathered}$	$\begin{aligned} & \hline I \\ & J \\ & K \end{aligned}$	$\begin{aligned} & 17+19=36^{*} \\ & 24+18=42 \\ & 15+26=41 \end{aligned}$
	G	$\begin{gathered} G I \\ G J \\ G K \\ \hline \end{gathered}$	$\begin{aligned} & \hline I \\ & J \\ & K \end{aligned}$	$\begin{aligned} & 18+19=37^{*} \\ & 26+18=44 \\ & 14+26=40 \end{aligned}$
	H	$\begin{aligned} & \hline H J \\ & H K \end{aligned}$	$\begin{aligned} & \hline J \\ & K \end{aligned}$	$\begin{aligned} & 17+18=35^{*} \\ & 39+26=65 \end{aligned}$
3	B	$\begin{aligned} & B E \\ & B F \\ & B G \end{aligned}$	$\begin{aligned} & E \\ & F \\ & G \end{aligned}$	$\begin{aligned} & 21+47=68 \\ & 25+36=61^{*} \\ & 28+37=65 \end{aligned}$
	C	$\begin{aligned} & C E \\ & C F \\ & C G \\ & C H \end{aligned}$	$\begin{aligned} & \hline E \\ & F \\ & G \\ & H \end{aligned}$	$\begin{aligned} & 28+47=75 \\ & 30+36=66 \\ & 40+37=77 \\ & 28+35=63^{*} \end{aligned}$
	D	$\begin{aligned} & D F \\ & D G \\ & D H \end{aligned}$	$\begin{aligned} & F \\ & G \\ & H \end{aligned}$	$\begin{aligned} & 38+36=74 \\ & 24+37=61^{*} \\ & 35+35=70 \end{aligned}$
4	A	$\begin{aligned} & A B \\ & A C \\ & A D \end{aligned}$	$\begin{aligned} & \hline B \\ & C \\ & D \end{aligned}$	$\begin{aligned} & 19+61=80 \\ & 12+63=75 \\ & 7+61=68^{*} \end{aligned}$

4. need to add dummy row giving

				row m
27	80	8	81	8
28	60	5	71	5
30	90	7	73	7
0	0	0	0	

reducing rows gives:

$$
\begin{array}{cccc}
19 & 72 & 0 & 73 \\
23 & 55 & 0 & 66 \\
23 & 83 & 0 & 66 \\
0 & 0 & 0 & 0
\end{array}
$$

reducing columns will make no difference
2 lines required to cover all zeros, apply algorithm

$$
\begin{array}{lccccc}
0 & 53 & 0 & 54 & \\
4 & 36 & 0 & 47 \\
4 & 64 & 0 & 47 \\
0 & 0 & 19 & 0 & & \\
\hline
\end{array}
$$

3 lines required to cover all zeros, apply algorithm

$$
\begin{array}{cccc}
0^{*} & 17 & 0 & 18 \\
-4 & 0^{*} & 0 & 11 \\
4 & 28 & 0^{*} & 11 \\
36 & 0 & 55 & 0^{*}
\end{array}
$$

4 lines required to cover all zeros so allocation is possible team A does the windows team B does the conservatory team C does the doors the greenhouse is not done
total cost $=10 \times(27+60+7)=£ 940 \quad$ A1
5. (a)

(b) minimum cut $=\{S, A, B, C, D\} \mid\{T\}=38$
(c) e.g. augment $S A C T$ by $11, S B T$ by 16 , $S B D T$ by 10 and $S A D T$ by 1 , giving

maximum flow $=38$
(d) maximum as $=$ to minimum cut

B1
6. (a) Change all signs and add 4 to make +ve

		B		
		I	II	III
A	I	6	1	5
	II	0	9	2

let B play strategies I, II and III with proportions p_{1}, p_{2} and p_{3}
from A I, $6 p_{1}+1 p_{2}+5 p_{3} \leq \mathrm{v}$ so $\mathrm{v}-6 \mathrm{p} 1-1 \mathrm{p} 2-5 \mathrm{p} 3+\mathrm{s}=0$
from A II, $0 p_{1}+9 p_{2}+2 p_{3} \leq \mathrm{v}$ so v $-9 \mathrm{p} 2-2 \mathrm{p} 3+\mathrm{t}=0$
also, $\quad p_{1}+p_{2}+p_{3}+\mathrm{r}=1$

$$
\operatorname{maximise} \quad P-\mathrm{v}=0
$$

(b) Ignore the working below but the final answer is correct
tableau 1:

P	x_{1}	x_{2}	x_{3}	r	s	
1	${ }^{-} 1$	${ }^{-} 1$	${ }^{-} 1$	0	0	0
0	4	9	5	1	0	1
0	10	1	8	0	1	1

taking 10 as pivot
tableau 2:

P	x_{1}	x_{2}	x_{3}	r	s	
1	0	$-\frac{9}{10}$	$-\frac{4}{5}$	0	+	+
0	0	$8 \frac{3}{5}$	$1 \frac{4}{5}$	1	$-\frac{2}{5}$	$\frac{3}{5}$
0	1	+	4	0	+	+
10	+					

taking $8 \frac{3}{5}$ as pivot
tableau 3:

P	x_{1}	x_{2}	x_{3}	r	s	
1	0	0	$-\frac{1}{86}$	$\frac{9}{86}$	$\frac{5}{86}$	$\frac{7}{43}$
0	0	1	$\frac{9}{43}$	$\frac{5}{43}$	$-\frac{2}{43}$	$\frac{3}{43}$
0	1	0	$\frac{67}{86}$	$-\frac{1}{86}$	$\frac{9}{86}$	$\frac{4}{43}$

M1 A1
taking $\longdiv { \frac { 6 7 } { 8 6 } }$ as pivot
tableau 4:

P	x_{1}	x_{2}	x_{3}	r	s	
1	$\frac{1}{67}$	0	0	$\frac{7}{67}$	$\frac{4}{67}$	$\frac{11}{67}$
0	$-\frac{18}{67}$	1	0	$\frac{8}{67}$	$-\frac{5}{67}$	$\frac{3}{67}$
0	$1 \frac{19}{67}$	0	1	$-\frac{1}{67}$	$\frac{9}{67}$	$\frac{8}{67}$

tableau is optimal
$x_{1}=0, x_{2}=\frac{3}{67}, x_{3}=\frac{8}{67}, P=\frac{1}{v}=\frac{11}{67} \quad \therefore v=\frac{67}{11}$
giving $p_{1}=0, p_{2}=\frac{67}{11} \times \frac{3}{67}=\frac{3}{11}, p_{3}=\frac{67}{11} \times \frac{8}{67}=\frac{8}{11}$
$\therefore B$ should not play I, should play II $\frac{3}{11}$ of time and III $\frac{8}{11}$ of time
value of original game $=\frac{67}{11}-6=\frac{1}{11}$
A1

Total

